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ABSTRACT

There is a critical need that the mechanisms of
wear in marine components sliding under marginally-
lubricated conditions be elucidated. These conditions
were simulated in a tribotester that was operated under
conditions of high nominal pressure, low speed, and
small-amplitude reciprocating sliding. High purity
(99.9%) copper was selected as the rubbing member
because of its relatively simple microstructure and
its widespread use as a base metal in many bearing
alloys. The friction and wear of this metal, rubbing
against various counterfaces in "inert'" mineral oil,
were determined. Topographical changes and subsurface
deformation structures produced by sliding were deter-
mined.

The investigation produced information on the
following: (1) The influence of topographical changes
on the coefficient of friction (or frictional force);
(2) The dependence of the depth of deformation on the
coefficient of friction; (3) The mechanism of wear
particle formation; and (4) The relationship between
wear and the coefficient of friction. The results also
suggested that the topographical changes produced by
sliding may be more important than the properties of
the material itself in determining wear resistance.
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INTRODUCTION

Heavily-loaded low-speed sliding wear of metals is a tribological problem
that investigators generally avoid. Yet, the payoff from being able of operate
machinerv in the regime can be large. One such case is the pitch-changing mecha-
nism of controllable pitch propellers (CPP)* used in some of the Navy's ships.

The mechanism of wear in this regime is poorly understood. Wear particle
formation, subsurface damage to the softer bearing member, the role of deformation-
induced surface microstructural and topographical changes, and the influence of
the coefficient of friction on wear and on the depth of heavily deformed regions
remain uninvestigated. In some cases, wear problems are solved at great expense,
while in others, excessive maintenance is accepted because solutions are not
found. Existing technology cannot readily solve problems of friction and wear in
the high-load, low~speed sliding regime.

The purpose of this investigation was therefore to investigate in detail the
low-speed, high-load sliding behavior of metals, to elucidate the mechanisms of

friction and wear, and to recommend methods of mitigating wear.

BACKGROUND
A disturbing feature of the wear process is that in most practical cases
the conditions at and below the sliding interface are extremely complex. Naturally,
the tendency is to isolate a specific mechanism and then to overemphasize the role
of that mechanism in the wear process., However, apart from the most exceptional
circumstances, we do not know in detail what happens between two surfaces while
wear is actually occurring.l** The best we can do is study wear at various stages

and reconstruct a picture of the processes occurring.
ANALYTICAL TREATMENTS OF WEAR

The simplest relationship between the volume of wear, V, produced in sliding

a distance, s, was shown by Archard2 to be:

=k Us
V=ky (1)

*
Abbreviations used are defined on page X.

*x
References are listed on page 83.
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where
k = wear constant,* Archard wear coefficient f
W = applied load |
H = hardness of the material that is worn

This equation is equivalent to that derived by Holm,3 and is similar to that deduced

empirically by Burwell and Strang.a

The value of the wear coefficient used by Archard in the model is the
probability that the adhesive (cold-welding) forces will be large enough to tear
out a wear particle at a contact. For most material combinations the wear coeffi-
cient varies from 10_7 to 10_2. There is currently no theory capable of predicting
the values of k, although attempts have been made in the past.6 é

Experiments conducted with a wide range of material combinations and operating :
conditions (loads and speeds) have shown that once steady-state surface conditions
are established the wear rate is independent of the apparent area of contact.

Experiments have also determined that, for a wide range of conditions, the
wear is proportional to the sliding distance, but exceptions to this rule may be
found. Wear is proportional to the load 1is also in accordance with experimental
results if a change in load does not change sliding conditions. Thus, the wear rate
has been found to be proportional to the load in mild wear6 and again in severe
wear7 after the load increase has changed the regime of wear. This rule, again, has
many exceptions. Despite these limitations, the Archard relationship generally H
agrees with experimental evidence--i.e., wear increases with load and sliding dis-
tance (time), and is generally reduced by use of harder materials.

Starting around 1960, challenges to Archard's model began to appear. These
new models were directly or indirectly based on the concept that what was generally
regarded as adhesive wear was a fatigue process., Fatigue weakens materials, subse-
quently forming wear debris. 1In this fatigue model, the nondimensional wear
coefficient represents approximately the reciprocal of the number of stress cycles

required to produce a wear particle.8
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*In severe wear, k may take a value 102 to 104 greater than that found in mild
wear, Clearly,’a constant of proportionality in a mathematical equation should be
constant. To change materials would be to allow the constant to change, but to
increase the load or the speed should not change the constant of proportionality,
as admitted in the distinction between severe wear and mild wear.
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Additional challenges to thé adhesive wear model were made in the mid-1970's.
These concerned the inability of the model to predict: (a) abrupt changes in wear;
(b) formation of shell-, plate- or flake-type wear debris; (c) topography of worn
surfaces, which is one of scratches and grooves, (d) failure of some alloys to show
a decrease in wear with increasing hardness, and (e) large variations in the fric-

tion and wear behavior of metals that have only limited mutual solubility.

CHANGING CONDITIONS DURING SLIDING
Although all possible external inputs before a test can be diligently con-
trolled, conditions usually change during sliding. Wear by its very nature means
change. The diversity of changes in sliding conditions and these changes'
relative contributions and possible synergistic interactions under similar (or
different) sliding situations are poorly understood.
Changes in conditions that may occur during sliding include:
e entrappment of wear debris;
o increase in roughness of the contacting surfaces;
e formation of transfer films on one or both surfaces;
e chemical or physical modifications such as structural changes, plastic

deformation, and crack nucleation and growth;

e removal and formation of contaminant films, such as oxides and sulphides;

e softening and melting produced by frictional heat;

e reversal in the wear mode, whereby wear on one member ceases and wear
on the other begins; and
e changes in lubricating conditions.

All of these factors, singly or synergystically, may change the response of
the system to the wear process. One manifestation of such changes in sliding con-
ditions is the change in the coefficient of friction (u). This change is generally
large and readily detectable, although other times it is small and undetectable.

In a recent paper, Blau10 provided numerous examples where the coefficients of
friction and wear change with time. The shape of the friction vs. sliding distance
(i.e. number of cycles, time) curve is useful for identifying the various contribu-
tions to the process of wear in a given system. The factors responsible for the
change in surface conditions must be clearly identified in describing wear behavior

and providing solutions to reduce wear.
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WEAR REGIMES
There are two distinct wear regimes: mild and severe. Mild wear exhibits the
following characteristics:

e sliding surfaces become polished;

e there is little subsurface damage;

e wear particles, if any, are round, small, and nonmetallic, such as sul-
fides or oxides;

e rubbing surfaces are electrically nonconductive (contact resistance is
fairly high), where the lubricant film or other insulating nonmetallic films block
current flow across the interface;

e little or no transfer of metal occurs between surfaces;

e the coefficient of friction is relatively small--about 0.1 or less, and

e wear is relatively light.

In contrast, severe wear has the following characteristics:

e worn surfaces are rough;

e subsurface damage is considerable;

e wear particles are relatively large, flake-like, and predominantly
metallic;

e rubbing surfaces are electrically conducting (contact resistance falls
to a low value);

e a large amount of metal is transferred between surfaces and can usually
be observed with the unaided eye;

e the coefficient of friction is usually much greater than 0.1; and

o the wear may increase a hundred- or thousandfold over mild wear.

RELATION OF COEFFICIENT OF FRICTION TO WEAR

In most situations where mild wear occurs, the friction coefficient is of the
order of 0,1 or 1ess.9 In the high-load, low-speed, controllable pitch propeller
application discussed in the introduction, wear was severe--visible wear and trans-
fer of metal between surfaces occurred--when the coefficient of friction was
greater than 0.12. In general, high wear accompanies high friction coefficients,
but otherwise there appears to be little correlation between friction and wear.ll
The use of the coefficient of friction to compare different systems (material and
operating inputs) as to their propensity to wear may be misleading, but if

restricted to similar systems this comparison may be valid.




CONTACT LOAD EFFECTS ON WEAR

At light loads, where nominal contact pressures are low, the wear particles
generated become detached and may leave the contact interface with relative ease.
At higher loads nominal contact pressures increase and the true area of contact
approaches the size of the apparent or nominal contact area. A loose particle,
once formed, cannot escape without producing more particles, which then increase

roughness, friction coefficient, and subsurface damage.

CURRENT STATE OF KNOWLEDGE

As Tabor1 says, "There are no 'laws' of wear." On the whole, wear increases
with load and with duration of sliding, but even here there are exceptions, and
usually hard materials wear less than soft materials. Rowe12 has remarked that
"the general principles for improving service life are the same as they were 3,000
years ago: choose a smooth hard material, lubricate it effectively, and keep out

the grit."

OBJECTIVES AND APPROACH
OBJECTIVES
Because of the current state of knowledge, the challenges made to the existing

tribological models, the complexity of the wear process, and the competing theories
of wear, a program was initiated at DTNSRDC to study friction and wear. The objec-
tives of the study reported here were to investigate the following aspects of wear:

e microstructural changes produced by wear,

e subsurface damage produced by wear,

e topographical changes produced by wear,

o the influence of the topographical changes on the coefficient of
friction,

o the relationship between the coefficient of friction and wear,

o mechanisms of wear particle formation, and

@ the stresses and strains within the substructure of the heavily

deformed regions.
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APPROACH

Instead of simply measuring the amount of wear under a series of loads, speeds,
temperatures and environments, these experimental variables were fixed. The condi-
tions selected were based on the conditions that exist in a CCP bearing where
severe wear is known to occur. In this bearing, wear does not occur during pitch
changes; it occurs when pitch is fixed and there is no apparent bearing movement,
where small amplitude vibratory motion is produced because of the varying hydro-
dynamic load on the propeller blades.

However, three departures from the actual situation in the CPP bearing were
made: (a) a high~purity copper was selected instead of the multi-phase bearing
bronze; (b) an additive-free mineral oil was used instead of an additive-laden
lubricating oil; and (c) high-purity copper sliding against itself was also
tested.

The friction and wear characteristics of three material combinations have been
determined by a tribometer, which can measure the coefficient of friction continu-
ously. Experiments were conducted under a defined set of conditions, load, speed,
amplitudes of sliding, contact configuration, environment, and initial contact

topography. The weight lost by the materials after a period of sliding was deter-

mined. The evaluation conditions were selected so that there was no full fluid
film between the rubbing contacts. The surface microstructural changes, subsurface
deformation, and apparent topographical changes induced by wear were observed using
a scanning electron microscope (SEM). The worn copper surface was also examined

by microhardness and X-ray measurements. Each copper bearing specimen was heat~

treated before the tests to relieve damage due to machining and to produce a known 1

grain size and hardness.

DEFINITION OF WEAR

For the purpose of this’ paper, wear is defined as the weight of material
removed from the copper bearing surface by the mechanical interaction of this sur-
face when placed under load against a counterface and set in motion. This défini-
tion of wear differs only slightly from the definition given by the Scientific
Research Committee of the Organization for Economic Cooperation and Development

(OECD): "the progressive loss of substance from the operating surface of a body z
"13 ]

occurring as a result of relative motion of the surface.




EXPERIMENTAL MATERIALS, TRIBOMETER, AND PROCEDURES

BEARING SPECIMENS )

)

Material Selection :
High-purity copper (99.9% copper) commonly designated as oxygen-free high-
conductivity copper (OFHC) was selected for the following reasons: (a) its ready
availability; (b) its simple (single-phase) microstructure, which avoids complica-
tions associated with materials containing second phase particles; (c) its wide-
spread use in both tribological and mechanical property studies which allows our.
results to be compared with those of other investigators; (d) its widespread use as
a base metal in the formulation of bearing bronzes; (e) its susceptibility to heat
treatment and working into such various structures as fully-worked, partially
recrystallized, and fully recrystallized or annealed structures; and finally (f)
the ease with which it allows the regions of near-surface deformation produced by

sliding to be distinguished from the undeformed bulk structure and to be measured.

Heat Treatment, Fabrication, and Properties

The copper was received in 2.54~cm-diameter hard temper rod. The Knoop hard-
ness and grain size of the specimens used after annealing for 2 hours at 700°k
are indicated by an arrow in Figure 1. The density of this metal at 293%K is
8940 kg/m3. The specimens were machined from the rod as received and then annealed
in sealed capsules to the desired hardness and grain size. They were then lightly
electropolished to remove any residual near-suyrface deformations that might have
been introduced by maching and remained after annealing. The surface of the elec-

tropolished bearing is shown in Figure 2.
COUNTERFACE SPECIMENS

Materials

Three types of metals were used as counterface specimens: (a) a low-carbon,

medium chromium and nickel steel (HY 100), (b) a nickel-chromium based alloy

(Inconel 718) and (c) high-purity copper. These metals hereafter are identiffed
as (a) steel, (b) Inconel, and (c) copper.
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The steel and Inconel were selected for study because the steel is currently
used in the CPP application and the Inconel had been suggested as a substitute for
steel for structural reasons. The copper was selected to obtain a larger coeffi-
cient of friction and larger amount of wear than would be obtained by copper slid-

ing against steel or Inconel.

Fabrication

The steel and Inconel counterface specimens were machined from plate. The
steel was used as received, whereas the Inconel was solution-annealed and aged.
The copper counterface was fabricated using the same procedures used for the copper
bearing specimen.

The bearing surfaces of the steel and Inconel were circumferentially ground to
a relatively fine finish of better than 0.2 um, RA. The surfaces were then lightly
lapped to remove loose debris that might have been generated by grinding.

The Diamond Pyramid Hardness (DPN, or Vickers hardness) using a 29-N identation
load was 2900 + 300 MPa for the steel and 4100 * 200 MPa for the Inconel. The

copper counterface had the same hardness as the copper bearing specimen.

SPECIMEN SHAPE AND DIMENSIONS

The copper bearing specimen had three projecting rectangular bearing surfaces
(tips), each 1.02 by 0.76 mm. The sides of the projections sloped at an angle of
45 degrees., The projections were centered on a 19-mm~diameter circle and were
spaced 120 degrees apart. They were about 0.76 mm high. The length, diameter, and
tip dimensions of the bearing specimen are shown in Figure 3. Specimens were
designed so that both sides could be used for separate evaluation of friction and
wear,

The counterface was cylindrical with top and bottom surfaces ground flat and

perpendicular to the cylindrical axis (see Figure 4).

MINERAL OIL ENVIRONMENT

The contact interface between the bearing and counterface specimens was covered
with a pharmaceutical-grade heavy napthenic oil, which will be called mineral oil.
The mineral oil was filtered through a diatomaceous earth and silica gel filled

column to remove active additives, such as an antioxidant known to be present.

. 4
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Figure 4 - Counterface Specimen

13




The oil typically has an absolute viscosity of 50 centipoise (cp) at 310%

and 8.5 cp at 372°K. The density at 298°Kk is 886.3 kg/m3. The viscosity character-

istics of the oil resemble a Navy Symbol 2135-grade lubricant.

The mineral o0il was used for two reasons: to recreate an environment similar
to that present in practice; and to reduce reactions between the highly active
metal surfaces, wear particles, and transfer metal with gaseous species in the
ambient air, such as oxygen and water vapor. I also recognized that the mineral oil
may contain a small concentration of oxygen and also a trace of water that might
play an active role in the wear process. In mild wear or boundary lubricated situa-
tions, this factor might well be important,14 whereas in the severe regime its role

is probably insignificant.

HIGH-LOAD, LOW-SPEED, RECIPROCATING SLIDING TRIBOMETER

The tribometer is shown Figure 5. It was designated to evaluate the friction
and wear of two specimens (the copper bearing and flat-faced counterface specimens)
mounted end-to-end and aligned axially. One of the two test specimens is rigidly
mounted to a load cell and the other to a fixture mounted on a precision spindle.
A torque arm is mechanically fixed to the spindle. Cyclic motion is imparted to
the spindle, via the torque arm, by an air motor with an adjustable center cam.
A load cell positioned between the torque arm and the cam center measures the
frictional torque, which can be converted to a frictional force (F) by dividing
the torque value by the mear radius of frictional contact. A constant axial load
(W) is applied to the specimens by an air cylinder. The signals from both the
axial load cell and the torque arm load cell are continuously monitored by a two-
channel Sanborn 321 recorder.* A typical strip-chart record showing the normal
force and the cyclical frictional force produced by sliding is shown in Figure 6.
The coefficient of friction (u) is obtained by dividing the normal load (W) into
the friction force (F). The axial load cell is calibrated by a compression gage

and the torque load cell by dead weight loading. Signals from microswitches

*Certain trade names and company products are identified in order to adequately
specify our experimental procedure. In no case does such identification imply
recommendation or endorsement by the Department of the Navy or the Naval service at
large, nor does it imply that the products are necessarily the best available for
the purpose.
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contacting the outer periphery of the cam are fed to a counter. The counter

registers the number of cycles of sliding.

TEST COND"TIONS

Tests were conducted under the following conditions: (a) normal load of 276 N,
(b) mean sliding speed of 4 mm/sec, where the amplitude of oscillation is *2
degrees with a frequency of 3 Hz. The total distance travelled per cycle by the
copper bearing specimen relative to the counterface was 1.32 mm. The tests were
conducted at room temperature, The contact interfaces were covered with mineral
oil.

These test conditions are typical of the conditions experienced by an actual
scrvice-type bearing. The load used corresponded to the probable peak contact load-
ing experienced in service. In other (unpublished) studies I have found that most,
if not all, wear takes place at these loads. The nominal contact pressure, based on
the rectangular dimensions of the copper tips, was about 115 MPa. The nominal pres-
sure used in this study is comparable to the Hertzian contact stresses used by
other investigators in the study of the severe wear of metals.ls’16 Although the
loads used by these investigators, in many cases, seem relatively small--on the
order of 10N--the geometrical arrangements used, i.e., flat-on-ring, pin-on-disk,
or cross-cylinders, produce high initial contact stresses which can readily lead to
a rough topography, high coefficients of friction, and high wear. It was not our
intention in this study to use conditions that could yield severe wear, but rather

to duplicate conditions that would be experienced in the CPP application.

WEAR MEASUREMENTS

Specimens were weighed to determine wear because this method is accurate and
simple. A Mettler HL52 electronic balance with a sensitivity of 0,01 mg was used
to determine the weight loss of the copper bearing specimen and the weight loss (or
gain) of the counterface specimen. The reproducibility of repeat weighings was
0.1 mg.

Before testing, the copper bearing specimen and its companion counterface
were ultrasonically cleaned in boiling hexane, allowed to cool to room temperature,
and then weighed. Weight measurements were taken until at least three consecutive

weighings agreed at least to within 0.1 mg. After completing the test, the

17
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specimens were removed from the tribometer, cleaned again, and weighed. The differ-
ence in weight before and after testing is the material lost because of wear. The
wear volume of the copper bearing specimen may be determined by dividing the weight
loss bv the density of the copper.

FRICTION AND WEAR TEST PROCEDURES

The three combinations of metals were tested for 50,000 cycles (66 m of slid-
ing). During this period the frictionmal forces were continuously monitored. The
coefficients of friction were then calculated. Each combination of metals was
tested three times. A new copper bearing specimen and an unworn counterface surface
were used for each test. A fresh spot on the counterface specimen was obtained for
each test by rotating the counterface in its holder to a new location.

Friction and wear were also determined for shorter durations of sliding, for
example, 100 cycles (0.132 m of sliding), 1000 cycles (1.32 m of sliding), and
10,000 cycles (13.2 m of sliding).

In some additional experiments, worn copper tip was slid against an unworn
counterface, and friction versus time was monitored. In others, a test was begun,
then stopped, and the specimens were separated but not removed from their holders
for lengths of time ranging from 1 hour to 1 day. The specimens were returned to
contact, the load reapplied, and sliding resumed. Upon resumption of test, the
friction versus time was monitored as before. 1In other tests, the test was begun,
then stopped, and the specimens were separated. The contact surfaces were lightly
brushed to remove loose or weakly adhering wear particles, the specimens were

then returned to contact, the load applied, and the test resumed.

MICROHARDNESS MEASUREMENTS

The DPN values were determined using a 0.49-N indentation load in a Leitz
Microhardness Testing Microscope. They were determined, on one tip of each copper
bearing specimen slid, without interruption, for 100, 1,000, 10,000, and 50,000
cycles against steel or Inconel. At least five hardness determinations were made at
random locations on each worn copper tip. No attempts were made to measure hard-
ness of the copper transferred to the counterface, because indentation hardness of

a relatively thin layer is affected by the properties of the underlying material.

18




Subsurface hardness of the deformed region in the copper was determined where the
region was thick enough to allow a reliable measurement. If the region is thin,
measurements of hardness taken too close to the free surface result in unreliable
and generally low hardness values. Even for the thickest deformed region found in
this study, a 0.49-N load gave indentations that were too large and too near the
free surface to obtain meaningful values of hardness. Therefore a 0.15-N load was
used to provide a smaller indentation further from the free surface. No hardness
measurements were made on the copper bearing tip sliding against a copper counter-

face because the resultant surfaces were too rough.

PARTICLE SIZE AND MICROSTRAIN MEASUREMENTS
The Warren-Averbach (W-A) method of X-ray diffraction was applied to the wear

1/2 from the line

specimens to determine the particle size and the mean strain <e2>
broadening of the X-ray profiles, which was caused by surface deformation during
sliding. The line broadening represents convolution of the contributions of both
particle size and microstrains; the W-A method, applying a Fourier analysis of the
profiles, separates these two effects. The principle by which the two contributing
factors--particle size (coherently reflecting domains) and microstrain--are
separated is based on the fact that the particle size is independent on (hkl)
planes, whereas the microstrain depends on the (hkl) planes studied. Thus, parti-
cularly. in determining the microstrains, one selects the higher orders of a
particular (hkl) reflection. In this case planes (111) and (222) were investigated

and a Fourier analysis of the wear specimens according to the W-A method was done.

DETERMINATIONS OF WORN COPPER TIP AND COUNTERFACE TOPOGRAPHY

The surface contact morphologies of the copper against steel and copper
against Inconel wear specimens were viewed in the scanning electron microscope.
Scanning electron photomicrographs of each of the three tips were obtained for 100,
1,000, 10,000, and 50,000 cycles. Scanning electron micrographs for the cor-
responding contact areas on the counterface were obtained at 10,000 and 50,000
cycles. Secondary electron images (SEI) were obtained throughout in the study of
the topographical changes in the worn copper and counterface contact surface. Con-~
tact topography on the steel and Inconel at 100 and 1000 cycles could not be readily

differentiated from the prepared, unworn surface.
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MATERIAL TRANSFER

Transfer of material between tip and counterface was determined by Energy
Dispersive X-ray Analysis (EDX). For each scanning electron image obtained, an
elemental spectrum was also obtained. This elemental spectrum provides information
about the possible material transfer between the surfaces. For example, the high-
purity copper contains only the peak absorption line of the copper, whereas the
steel and Inconel counterfaces contain peak absorption lines for the elements iron,
chromium, and nickel, but none for copper. 1In looking for transfer to either the
steel or the Inconel, the presence of a copper absorption peak would indicate that
metallic copper or its oxide had been transferred. The presence of iron, chromium,
or nickel on the copper wear surface would suggest that material from the counter-
face had been transferred in metallic or nommetallic form. The absence of an
absorption peak for copper on the counterface or iron, chromium, or nickel on the
copper surface does not necessarily indicate that no transfer has occurred, only

that any amount transferred is too small for detection.

METALLOGRAPHIC SECTIONING OF WORN COPPER TIPS

Metallographic sections of worn copper tips were made to observe the subsurface
deformation produced by sliding. The size and depths of heavy deformation near the
copper bearing surface were determined from both transverse (cut perpendicular to
the direction of motion) and longitudinal (cut parallel to the direction of motion)
cross-sections for specimens slid 100, 1,000, 10,000, and 50,000 cycles. One tip
from each copper bearing specimen was sectioned longitudinally, and a second tip
was sectioned transversely. Sectioning of a single tip both transversely and
longitudinally was not possible because of size. Sections of the copper bearing
tip were mounted, metallographically polished and lightly etched with 30 volume
percent nitric acid to bring out regions of heavy near-surface deformation. The
distinction could be made fairly easily between the ‘eformed regions produced by
wear and the bulk large-equiaxed grain structure of the fully annealed nondeformed
copper when the material was viewed at high magnification in an optical or scanning
electron microscope. Sections were viewed in the scanning electron microscope in
both the back-scattering and secondary electroa modes. For many sections the back-
scattering photomicrographs (BEl) were obtained. The back-scattering photomicro-
graphs appeared to highlight the deformation characteristics and crack formation

better than the secondary electron micrographs.
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RESULTS AND DISCUSSION

THE POWER RELATIONSHIP
Although it is generally accepted that wear, is to a first approximation

proportional to the load, it is less commonly appreciated that a slight change in
the coefficient of friction can produce drastic changes in wear. Tabor has con-
sistently emphasized this fact.1 In addition, wear is probably some exponential
fun:tion of the coefficient of friction. The functional form can be dependent on
the regime of sliding and may be specific for a given combination of sliding
materials. For cxample, in the copper-steel system the relationship between wear

and coefficient of friction may be written:

S

wear uJ/r un ds (2)

0

where

n = wear severity index

b = coefficient of friction produced by solid contact

s = sliding distance.

For hydrodynamic lubrication no solid contact occurs and ideally there is no
wear. For boundary lubrication Litvinov and Mikhin17 demonstrated that, for copper
sliding on steel, as the coefficient of friction increases from 0,01 to 0.07, the
wear intensity increases about two orders. The magnitude of the coefficient of
friction may be related to the original surface finish of the steel. A replot of
their data (on log-log paper where n is the slope of the line obtained) for wear
intensity as a function of coefficient of friction shows that as the roughness or
coefficient of friction increases, n approaches a value of 2.5. For very fine
finishes or low coefficients of friction, n is a small number.

Stowers and Rabinowicz,18 who studied copper sliding against steel and steel
sliding against steel, found that in the severe wear regime, n was about 4, 1In
another study, Rabinowicz8 used a wide variety of metals in both unidirectional and
reciprocating sliding, lubricated and unlubricated. He concluded that n fell

between 4 and 5, but an accurate value of n could not be determined by this writer
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because of the wide scatter of data. A plot of the wear data versus steady-state

coefficient of friction obtained by Ruff and Blau19 for the dry sliding of copper

alloys and steels on steel also showed that the wear is proportional to about the ’
fourth power of the friction coefficient. In the same paper the steady-state

coefficient of friction for a dual phase (DP) 80, low alloy, high-str. :t. steel .
was reported to have two values, 0.55 and 0.78, which were obtained under ajpa..ntly

the same conditions of sliding. The wear at the larger friction coefficient was

four times greater. This is not surprising, because the fourth power of the larrer
coefficient of friction is four times larger than the fourth power of the smallc:
coefficients. 1 have determined friction and wear for a wide range of copper-based

alloys sliding against many types of hard counterfaces at DTNSRDC (data not pub-

lished). 1t was found that the wear in these systems was proportional to the

fourth power of the quasi-steady-state coefficient of friction. 1In these studies

a variety of commercially-available bronzes, such as cast and wrought aluminum

bronzes, nickel-aluminum bronze, manganese-aluminum bronze and high-tin bronze were

used.

FRICTION-SLIDING DURATION CURVES

Curves of friction vs, cycle time (or distance travelled) can be used (1) ro
identify the mechanisms of friction and mode of wear, (2) to calculate the fourth
power mean of the friction coefficient, (3) to determine specific wear rates from
shorter periods of sliding where large changes in the coefficient of friction may
occur, and (4) to determine the work input and temperature rise.

In this study, friction-duration curves were used primarily to detect changes
in the mode of sliding and to calculate the fourth power mean of the coefficient of
friction,

The fourth power mean is given by the following equation

0.25

W, - 2 (3)

where ¢ = number of cycles.
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Because the wear and friction varied as the fourth power of the coefficient of
friction, I chose to describe the data using this relationship. 1In this study
the fourth power mean aa and the mean coefficient of friction (u) for the 50,000
cycle sliding duration were about equal. 1In a system where no transient states
occur, i.e., for a constant coefficient of friction (steady-state), would equal
E&’ but for a large change in coefficient in time, ﬁz would provide the proper
representation. For example, where copper slides against itself the short-term
evaluation showed that ﬁz is greater than |i; whereas, where copper slides against
steel or Inconel, and small changes in coefficient of friction occurred with
ircreasing cycles, Bd’ﬁ'throughOut the duration of test. The relationships

between EA and U is shown in Figure 7.

WEAR RESULTS

The wear data obtained in this study are shown in Figure 8, The weight loss
after 50,000 cycles (66 m) of sliding is plotted on log-log paper against the
fourth power mean of the coefficient of friction. Because the fourth power mean
was generally equivalent to the average coefficient, (Ezzﬂ), either coefficient of
friction could be used, A line of slope 4 fit the data rather well, and agrees

18,19

with other researchers findings previously discussed. From my work the fol-

lowing relationship between wear and the coefficient friction was obtained.

Wear (weight loss) a u“ (4

Included in Figure 8 is an order of magnitude estimate of the Archard wear coeffi-
cient (k) obtained from Equation (1). A specific value for this coefficient will
not be provided because of the uncertainty in the value of the metal hardness.
Most probably the fully-worked hardness of about 1370 MPa (140 kg/mmz) would have
been a more reasonable value to have used than the bulk hardness of 440 MPa

(45 kg/mmz), as wear is expected to occur in regions of heavy deformation where
the hardness approaches or equals the fully strain-hardened value., Typical values
of the coefficient of wear, k, for metal (on metals) or nonmetal (on metal) have

been provided by Rabinowicz (Reference 5, Table 6.6, p. 164), The wear data of
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of Figure 8 also show that the wear of copper sliding against steel was lower than

copper sliding on Inconel, and that the highest wear occurred when copper was made

to slide against copper.

Stages of Wear for Copper Sliding on Steel or Incomnel

Although the curve of coefficient of friction vs. time gives a qualitative
picture of the changing surface condition during sliding, it may or not not be use-
ful in quantitatively distinguishing between the onset of one stage of sliding wear
and the end of another. Three stages of wear based on the friction vs. test
duration were assigned. The three stages are shown in Figure 9 and are identified
as early stage, intermediate stage, and later stage. The transitions between the
stages were arbitrarily selected. 1In the early stage the friction coefficient was
relatively constant at 0.16 * 0.03; this stage extended to about 10,000 cycles for
copper against steel and to only 1,000 cycles for copper against Inconel. 1In the
intermediate stage the coefficient of friction increased with duration of sliding;
for example, for the copper against Inconel the friction coefficient increased to
about 0.34 and for the copper against steel to about 0.24. This stage lasted
about 20,000 cycles for copper against steel and 30,000 cycles for copper against
Inconel. In the later stage the coefficient of friction stayed constant and con-
tinued up to 50,000 cycles and beyond in some evaluations where periods of sliding
longer than 50,000 cycles were investigated.

The division of the wear process into three distinct stages (multistages)
is not inconsistent with the experimental findings of Kerridge and Lancaster7 and
Kennedy and Voss.20 The system that they chose is similar to the one used in this
investigation--brass against a harder metal in which the debris produced is
metallic. Kerridge and Lancaster7 identified at least two distinct stages: the
removal of metal from the wearing surface by transfer, and the formation of wear
debris from the transferred layer on the opposing member. Kennedy and Voss20
showed that the wear process appeared to proceed i: three stages: an initial or
surface preparation stage, a second stage during which a transfer film was formed,

and a steady-state stage,
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Coefficient of Friction During the Early Stage

The coefficient of friction observed in the early stage of sliding is similar !
to that reported by Suh and Sin,21 who attribute it to asperity deformation. They
also reported that the value of the coefficient of friction in this state is inde-
pendent of the materials tested, the test environment, and the surface roughness.
The values reported here and by Suh and Sinz1 are similar because the initial

topographies had about the same characteristics. 1If a much rougher counterface were y

made to slide against copper, the early stage coefficient of friction would be 5

larger than that reported in this study. The initial coefficient of friction may

also be increased by use of a softer member that has been highly polished and fully
strain-hardened. Thus the same initial constant values obtained in this study

and reference21 are probably an artifact based on the test conditions.

MORPHOLOGICAL CHANGES AND METAL TRANSFER

Early Stage

The original surface of copper becomes smooth and assumes a polished appearance
during early stage wear, as shown in Figures 10 and 11. Toward the completion of
this stage there is an increasing amount of grooving.

Although the dominant mode of surface modification near the completion of the
early stage was smoothing, we observed that for copper sliding against Incorel at
1000 cycles, a relatively small localized region of fragmentation and roughening
had formed in one of the copper tips, as shown in Figure 12, This region of
relatively heavy fragmentation had the same characteristic surface morphology

found in the subsequent stages of sliding. This figure shows that the localized

fragmentation of the surface contained platelike wear particles, cracks, tears, and
E metal removal. The severity of damage in this region may be attributed both to
L the strain-hardening of the copper and to the load concentration and high localized
stress produced by nonuniform contact. Another consequence of load concentration
i was increased localized frictional forces.
For copper sliding against steel, the early stage of pnlishing, smoothing, and
slight grooving seemed to last to about 10,000 cycles. At this time one of the
~fopper tips developed a localized region of heavy deformation and wear, as shown in
Figure 13, The localized high intensity of deformation in one of the copper tips
is clearly evident in Figure 14, a magnified view of Figure 13. 1In Figure 14

~
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MOTION

PRIMARY MODE OF

SURFACE MODIFICATION ——i LOCALIZED REGION OF

(SMOOTHING, POLISHING 50 um HEAVY SURFACE DAMAGE AND

AND SLIGHT SCRATCHING) ROUGHENING ACCOMPANIED 8Y
SMALL AMOUNT OF METAL

REMOVAL (A} CRACKS (B)
FORMATION OF PLATE-LIKE
FRAGMENTS (C)

Figure 12 - Localized Heavy Damage on Copper Tip Toward End of Early
Stage Sliding on Inconel, Even Though the Dominant Mode of Surface
Deformation is Srmoothing, Polishing and Light Grooving
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HEAVY
DEFORMATION
AND WEAR

Figure 13 - Heavily Deformed Region in Copper Tip at the
End of Early Stage Sliding on Steel
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the plateaus and ridges appear to be highly strained, cracks have formed at the
edges of the deformed ridges, a plateau has been fragmented and material removed,
and very thin coiled-up wear particles have been generated, The reasons for the
localized severity of surface damage are the same as those just mentioned for the
copper sliding against Inconel. In the early stage of sliding there was no dis-
cernible transfer of copper to the hard counterfaces, although on some samples the
EDX spectrum did pick up a slight trace of iron (probably iron oxide) on some of
the copper wear tips. Neither the copper specimens nor the hard counterfaces lost
measurable amount of weight. Atomic absorption spectrophotometry of wear debris
collected during this stage revealed trace amounts of iron, but no apparent copper,

chromium, or nickel.

Intermediate Stage

Sliding in the intermediate stage is characterized by ever increasing surface
damage. The surface morphologies at the beginning of this stage resembled those
in the early stage, but the morphologies developed toward the end resembled the
later stage morphology. Damage to the copper sliding on the Inconel was much more
severe than that observed for the copper sliding on steel. Figure 15 shows the
topography of a copper tip woin against steel and a tip worn against Inconel, both
after 10,000 cycles. The surface of the copper worn against Inconel is distinctly
more worn, and also shows localized fragmentation and tearing of the uppermost
layers of the copper.

The most striking difference between intermediate and early stage wear was the
noticeable transfer of copper counterface., On the steel counterface, the trans-
ferred copper resided primarily within the initial grinding troughs and within
scratches produced by hard particles during the course of sliding (see Figure 16).

A copper map of the steel counterface in Figure 16 shows the location of such trans-
fer. The height of metal transfer above the general level of topography was
apparently slight. 1In comparison, the transfer of copper to the Inconel countarface
was confined to localized discrete spots (see Figure 17). These spots generally
appeared large, standing proud of the general level of the underlying topography.
Some copper was also transferred within the initial surface depressions and
scratches produced by sliding, but the the height of this transfer above tic general

level of topography was small.
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A--CRACKS OR TEARS
B—-FRACTURED PLATEAU
C—-METAL REMOVAL

D-—-THIN COPPER WEAR PARTICLES

Figure 14 - Magnified View of High Intensity Deformation Circled
in Figure 13. Note Cracks, Plateaus, Metal
Removal, and Thin Copper Wear Particles
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ONE POSSIBLE SITE OF
WEAR PARTICLE FORMATION
(OTHER SITES ALSO SHOWN)
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Figure 15 - During the Intermediate Stage of Sliding (at 10,000 Cycles),
Damage to (A) Copper on Steel is Less Severe
Than to (B) Copper on Inconel
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The coefficient of friction in the intermediate stage increased from the base
value of the early stage to a value of about 0.24 for copper sliding on steel and
0.34 for copper sliding on Inconel. The increase in both the degree of surface
damage and the coefficient of friction was probably caused by this transfer. In
the early stage the coefficient of friction and surface damage may be related
principally to the surface asperity deformation of the copper bearing and may remain
essentially constant. In the intermediate stage, however, the increase in coeffi-
cient of friction and severity of deformation may be related to the grooving or
plowing of the copper surface by the transferred metal (the transfer patch). The
further the transfer metal protrudes above the general level of topography, the
greater its propensity to penetrate the copper bearing surface, grow, plow, and
increase wear. The growth of the transfer patch probably occurs by adhesion or
mechanical means. A closer examination of the Inconel counterface revealed that
copper had been transferred into holes of the counterface (mechanical pitting) pro-
duced by the repetitive rubbing action. Hole formation in the Inconel counterface
is shown in Figure 18. These holes are most likely produced by the removal of the
hard Laves phase from this alloy. Unlike the transfer into the original grinding
grooves of the steel counterface, where flow was not completely constrained, the
copper transferred into the holes of the Inconel counterface was prevented almost
completely from flowing plastically. The restraint on flow is illustrated in
Figure 19. This finding suggests that the size and shape of the depressions in the
counterface determine the strength of the attachment of the transfer metal and its
height and flow characteristics. If the transfer metal is kept from flowing by the
surrounding counterface metal, its effective hardness is considerably raised over
its own nominal hardness. Such an increase in hardness would then increase its

propensity to penetrate, plow, and grow.

Later Stage

The worn surface morphologies produced in later stage wear, as Figure 20 shows,
were similar to those obtained in the intermedijate stage. lere again the scale of
damage appeared to be greater for copper rubbing on Inconel than for copper on
steel.

This copper-Inconel sliding combination also produced many large platelike

wear particles. One such particle which presumably had been back-transferred to
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the copper surface and had been in rubbing contact with the counterface, is shown

in Figure 20. This figure also shows quite vididly the heavy grooving of the worn
surface and the break-up of the load-carrying plateaus by surface fragmentation.
The cyclic deterioration of the sliding surface, which produces sheet- or platelike
wear particles by a mechanism of crack initiation and growth, has been described
by Suh.ls’24

In the later stage, the pattern of transfer was similar to that observed
earlier, as shown in Figures 21 and 22, The copper transferred to the steel
counterface was more uniform and dense, and still apparently flat, whereas that
transferred to the Inconel was still discrete, and consisted of large particles
standing above the general level of topographical features. The contrast in con-
tact morphology was even more stark when the two counterfaces were examined at
lower magnification in the scanning electron microscope. The lower magnification
increases the field of view and better represents the morphologies (see Figures 23
and 24). 1In the copper-steel sliding combination the morphology was relatively
flat or smooth and uniform, whereas the copper-Inconel morphology was rough or
chunky and discrete. Many large grooves can be found in the corresponding copper
wear tip. The relatively flat transfer topography on the steel counterface indi-
cates less penetration and consequently less plowing of the copper bearing surface,
thereby lessening friction and severity of wear. Material transfer from the copper
surface to the steel counterface in both the intermediate and later wear stages did
not agree with adhesion or cold-welding theory. Transfer seemed to occur by
plastic flow into the surface depressions initially present in the counterface or
into depressions generated during sliding., Although no cross-sectional counterface
micrographs were obtained in this investigation because of the difficulty in sec-

23).

tioning the small contact area used, Tabor has provided such a micrograph (Howell
The micrograph was obtained for the copper sliding against steel. It has been
repeatedly used to support the adhesion (cold-welding) theory of friction. This
micrograph (taper section) is shown in Figure 25. Acutally, however, the figure
shows that transfer occurs by plastic flow into the surface depression of the
steel counterface. Also to be noted is that the larger the depression, the larger

the amount of metal transferred.
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STAGES OF WEAR FOR COPPER SLIDING ON COPPER

Copper sliding on itself is typical of a prow or wedge-forming wear mechanism
where gross "adhesion," interpenetration and plowing occur. This is not unlike the
mechanisms of wear occurring in the other sliding combinations studied in this
investigation, where the build-up of transfer patches by agglomeration of wear par-
ticles leads to interpenetration and plowing. The prow or wedge formation wear
mechanism has been described by saveral investigators.za-27 Briefly, it is a
severe wear process characterized by a build-up of a work-hardened transfer patch
which grows against the direction of sliding by continuous plastic shearing, or
plowing. The work-hardened transfer patch can be transferred back and forth in the
contact interface or can be removed whole or in fragments as loose wear debris.

Copper sliding on copper was not analyzed in detail because (a) it has been
described by numerous investigators, and (b) would not be used in practice. It
was trested because it would give both high wear and high friction and also would
serve to illustrate the asperity deformation and plowing aspects of wear.

The coefficient of friction versus time curve for copper sliding on copper is

shown in Figure 26. It has been arbitrarily divided into two stages, an intermediate

stage and a later stage. The intermediate stage may be further subdivided into two
stages, which would include a surface preparation or early stage. The early stage
was suppressed because of the high nominal contact pressure, the inability of the
counterface to support the relatively thin superficial oxide, the type of motion,
and the short length of rubbing contact. 1In other experiments (not reported here)
heavily tarnished specimens having presumably a thick oxide or sulphide layer,
were used. In these tests, the number of cycles of early stage sliding occupied a
significant portion of sliding time. The role of oxides or other natural non-
metallic films on the metal combinations in keeping the process within a regime of
relatively low coefficient of friction and wear should not be overlooked. Imn fact,
the tenacity of the natural oxide in withstanding repeated surface traction in
experiments using copper sliding on the relatively hard steel or Inconel counter-
faces should not be ignored, even 1f initial transfer is by mechanical entrapment
within the surface depressions of the hard counterface.

A few relatively short duration sliding experiments were conducted with copper
sliding on copper in order to obtain a picture of the early stage contact conditions

developed. In the initial stages of sliding, about 100 cycles, once the oxide or
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other nonmetallic film was broken, the copper contacts became extensively strained
and hardened, with gross penetration, and plowing of the harder surfaces into the
relatively soft subsurface metal. This penetration and plowing is shown in

Figure 27. The coefficient of friction on sliding rose to its maximum of about

0.75 and was accompanied bv high wear. On further sliding to about 3000 cycles

the contact geometry became more conforming and was accompanied by less plowing or
interpenetration, as shown in Figure 28, Here large flakelike particles were formed
by asperity shear deformation, as shown in Figure 29. The coefficient of friction
in this time period decreased from its maximum value to about 0.52. On continuation
of sliding the coefficient of friction decreased to a relatively low and steady
value of about 0.40 (10,000 cycles). Here the contact geometry was fully conforming
and the wear was lowest. A subsurface section obtained at 10,000 cycles is shown

in the optical photomicrograph of Figure 30. 1In this figure the maximum height of
grooving is about 30 um. The groove height is larger than the maximum depth of sub-
surface deformation, 25 um, seen throughout the micrograph. The fourth power mean
of the coefficient of friction for the 10,000-cycle run was 0.48, whereas the mean
coefficient was €.45. The micrograph of Figure 30 also shows sheetlike wear parti-

cles.

DEPTH OF DEFORMATION BELOW THE FREE SURFACE OF THE COPPER

Early Stage

In the very early stage of sliding (100 cycles) the asperities of the copper
bearing surfaces were deformed. The deformed metal flowed into the recesses, or
valleys, originally present. Figure 31 is a longitudinal section typical of the
very early stage of sliding. it shows the flow of metal from the high spots into
the recesses; the black areas remaining within the recess are voids. The surface
asperities in this stage were readily able to flow and relieve the contact stress
imposed on them. The capacity of these high spots to be easily deformed and thus
accommodate large strains is explained as follows: the contact loading provided a
hydrostatic component to the state of stress; the copper was not fully strain
hardened; and space for the metal from high spots to flow into was available. Later
in this stage (1000 cycles), the asperities were almost completely flattened, and a

well developed, relatively uniform, thin and probably work-hardened layer was
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Figure 27 - Interpenctration of Contact Surface During the

Verv Early Stage (About 100 Cveles) of Copper Sliding
on Copper
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— COPPER TIP
200 um

Figure 28 -~ By About 3000 Cycles, Contact Geometry of Copper Sliding on Copper
is More Conforming, and There is lLess Plowing and Interpenetration of
Contact Surfaces than Earlier. Circled Area is Further
Magnified in Figure 29.
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observed. A longitudinal section obtained during this period of sliding is shown
in Figure 32. Figures 31 and 32 are typical of micrographs of copper sliding
against both steel and Inconel. The coefficient of friction in this period (100 to
1000 cycles) reamined fairly constant for both systems, and there was no apparent
metal removal by wear particle formation or transfer. The depth of the heavily
deformed region in this stage ranged from about 2 to 4 um. The nature of the sub-
surface changes in the early stage of sliding was the same for copper sliding
against either steel or Inconel. At this stage, the deformed regions in the copper
bearing surface result from the deformation of the asperities, and the resultant
depth of this deformation would take on characteristic dimensions of the initial
surface relief. The subsurf::e may also be deformed by high spots of the counter-
face plowing the softer copper surface. The contribution of counterface plowing

to subsurface deformation was minimized in this study by the use of relatively
smooth, hard counterfaces. The depth of deformation from plowing was expected to
be about 0.1 um. In essence, the depth of deformation observed during the early
stage of sliding probably depends on the scale of the initial roughness of the
copper bearing surface and also on the method used in surface preparation (see

Figure 33).

Interriediate Stage

In the intermediate stage (10,000 cycles) of sliding on steel, both surface
roughening ana wear of copper increased (Figures 34 and 35). The surface roughening
was assoc iated with metal removal (Figure 34) and with the formation of ridges or
narrow plateaus (Figure 35). Between the ridges are undulations or grooves produced
by the plowing or grooving action of the protruding counterface transfer metal. The
heavily deformed regions in Figure 34 and the deformation layer in Figure 35 contain
what appear to be many voids, coalesced voids, and microcracks that are of various
sizes and depths from the free surface. The maximum depth of deformation (the
defect layer) was about 6 um when the coefficient of friction was about 0.21. These
sect ions should be compared to the morphological nature of the copper wear tip shown
in Figure 15 for copper sliding against steel, The surface view provides a clearer
visualizat fon of the forms of the free surface topography shown in the subsurface
sect fons of Figure 35. Subsurface morphology and depth of deformation for copper
sliding on Inconel during the intermediate stage was similar to that for copper

sliding on steel in the later stage, except that the deformed regions were more
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Figure 30 ~ Optical Micrograph of Transverse Section of a Copper
Tip After 10,000 Cycles Sliding on Copper, Showing Maximum
Height of Groove, Maximum Depth of Plastic
Deformation, and Sheatlike Particles
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Figure 31 - Longitudinal Section (BEI) of Copper Bear ing
Showing Flow of Metal by Asperity (High Spot)
Deformation Into and Across Sirface Relief
Recesses During Very Early Stage Sliding
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Figure 32 - Longitudinal Section (SEI) of Copper Bearing Showing
a Well-Developed, Relatively Uniform, Thin, and Probably
Work-Hardened Layer Produced During the lLatter

Part of Early Stage Sliding
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widely spaced and slightly deeper. The depth of the heavily deformed region below
the surface was about 8 im, and the coefficient of friction about 0.24. No micro-
graphs were obtained of subsurface deformation structures toward the end of the
intermediate stage for the two combinations of sliding metals. However, the sub-

surface deformation was probably similar to that in the later stage of sliding.

Later Stage

In the later stage (50,000 cycles) the maximum depth of deformation for copper
sliding on steel was about 9 um. Figures 36, 37, and 38 clearly show the severe
subsurface deformations associated with sliding under concentrated contact. Figure
38 is a secondary-electron image of Figure 37, and was included to show the general
topographical nature of the deformed layer. Figure 38 better delineates the micro-
crack locations and sizes within the regions of heavy deformation and shows that
the layer contains many microcracks of various sizes and at different depths, i.e.,
some are at the surface while others are below the worn free surface. Figure 36
shows a few shell-type wear particles lying on the surface and a particle about to
separate (fracture) from the parent metal. This separation may be facilitated by
the entrapment of wear debris in the plane of fracture. The subsurface damage to
copper sliding on Inconel was similar to that found in copper sliding on steel,
although the maximum depth of deformation, as shown in Figures 39 and 40, was much
larger. The depth of deformation was about 14 pum, and the coefficient of friction
was 0.34. This maximum value for the coefficient of friction for copper sliding
on Inconel was larger than the maximum value of 0.24 for copper sliding on steel.
Figure 40 also shows the separation of a large shell-like particle having a char-
acteristic dimension similar to that observed for the platelike particle shown in
Figure 20. The regions of heavy deformation in the copper bearing surface after
sliding against Inconel are generally larger and more widely spaced than the
regions found for copper sliding against steel, as can be seen by comparing Figures
36 and 40 (magnifications are not identical).

The deformed regions observed in the transverse sections were approximately
semicircular, with the widths of deformation roughly corresponding to the transfer-
patch width (compare Figures 40 and 41). 1In general, the distribution of both
width and depth of the region of heavy deformation was narrower in copper sliding
on steel than in copper sliding on Inconel (Figures 35, 36, and 40). This distribu-

tion was caused by the discrete nature of contact, and it was clearly evident in the
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METAL REMOVAL

NEAR SURFACE
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Figure 34 - Longitudinal Section (BEI) of Copper Bearing at
Intermediate Stage of Sliding on Steel, That
Contains Voids and Void Coalescence, Micro-
cracks and Areas of Metal Removal

NEAR SURFACE CRACKS
OR VOID

Figure 35 - Transverse Section (BEI) of Copper Bearing at Inter-
mediate Stage of Sliding on Steel Showing the Discrete
Nature of Contact and Regions of Heavy Deformation.
Deformed Regions Contain (A) Voids or Microcracks,

(B) Near~Surface Cracks and (C) Ridges or Plateaus
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SHELL OR CURVED PLATE-LIKE METAL REMOVAL
WEAR PARTICLES (B) BY SUBSURFACE
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ENTRAPPED
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Figure 36 - Transverse Section (SEI) of Copper Bearing at Later Stage
of Sliding on Steel, Showing Heavily Deformed Regions.
(A) Ridges or Plateaus, (B) Shell- or Platelike Wear
Particles, (C) Metal Removal by Subsurface Fragmen-
tation, and (D) Regions of Very Heavy Deformation
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Figure 37 - Longitudinal Section (BEI) of Copper Bearing in Later Stage of
Sliding on Steel, Showing That Heavily Deformed Layer of Figure 36
Contains Many Cracks Oriented Parallel to and at Various

Depths From the Surface
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Figure 38 -~ Longitudinal Section (SEI) of Copper Bearing at iLater
Stage on Steel, Showing Morphology of Heavily Deformed Layer
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Figure 39 - Longitudinal Section (BEI) of Copper Bearing at Later
Stage of Sliding on Inconel, Showing Heavily Deformed Region.
(A) Many Shell- and Flakelike Particles
and (B) Subsurface Cracking
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Figure 40 - Transverse Section (BEI) of Copper Bearing at Later Stage of Sliding
on Inconel, Showing Heavily Deformed Regions. Relatively Large
Shell-Like Wear Particle has Separated From the Surface.
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Figure 41 = Copper Transfer to Inconel Counterface Showing That the Transfer
Pateh Widths in Later Stage Wear Roughly Correspond to the Widths of
Deformed Repions Shown in Figure 40
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intermediate and later stages of sliding, where a greater degree of nonconformity
ol contdct resulted from metal transfer. Because of the variation in depths of
derormat ion produced by nonuniform contact, load concentration, and strain,
longitudinal sectioning is less reliable than transverse sectioning for obtaining

the maximum depth of deformation (dm).

RELATIONSHIP OF DEPTH OF DEFORMATION (Gm) TO COEFFICIENT OF FRICTION (u)

A plot of the maximum depth of the very highly deformed regions (Gm) as a
function of the coefficient of friction (i) is shown in Figure 42. The maximum
depth of deformation below a free surface was selected because it can be identified
using the height of the largest nonconformities produced by transfer, and it
probably better represents the most recently developed deformed regions. Of course,
the criteria used by the observer in various studies for identifying the depth of
this heavily deformed region can differ greatly, and these criteria will greatly
affect any comparison of valucs among studies. Figure 42 shows that the maximum
depth of deformation in-reases with increase in the coefficient of friction. From
these data both a linear relationship and a second power relationship between the
depth of heavy deformation and the measured coefficient of friction can be derived
as shown. Developing the proper functional relationship would require moi . data,
particularly in the low friction area (;i<0.1). A similar trend showing the increase
in the average depth of heavy deformation with increasing coefficient for other
copper-base metals is presented in Figure 43. Data in the figure were replotted

. 16
from Blau™ °, Table 1, for copper-zinc and copper-nickel alloys. Data for steels

16

sliding on steel also appear to follow the same trend (Blau

Table 1). One excep-
tic:n to the general trend was found in a copper-aluminum system, where an increase
in the aluminum content from 3.2 or 3.5 weight percent to 7 weight percent showed a
larger depth of deformatine with a smaller coefficient of friction. This exception
probably resultced trom a change in either the mode of defarwmation or the nature of
weai. Also included in Figure 43 are data obtained from the present study and from
[vvsla for copper sliding on steel.

In general, results of this and other studies have shown that either the maxi-

mum or the average depth of deformation increases with an increase in the coeffi-

cient of friction,
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CRACK LOCATION, DISTRIBUTION AND MICROCRACK GROWTH

A review of all cross sections obtained in this investigation suggested that
the prevalent location for crack (or defect) formation is below the rubbing surface.
This result was not unexpected, because contacts were concentrated so that the maxi-
mum shear strain would be located below the surface and because a hydrostatic com-
pression stress field was superimposed, which would inhibit near-surface void
formation, void coalescence, and microcrack formation. The nonuniformity in crack
sizes, i.e., length, depth, and distribution, when viewed in the longitudinal cross
sections, might be explained by the fact that this section is only one of many that
could have been taken through a heavily deformed region. The observer actually sees
cracks that are at different distances from the location of maximum subsurface
stress. When viewed in this section the cracks were orientated parallel to the slid-
ing surface (see Figure 38, for example). 1In the transverse sections the cracks
appeared as curved segments (arcs) and seemed to follow the deformation flow
paths toward the free surface. Here again, the cracks in these sections were non-
uniform in both depth and length. This is explained by the fact that in a wear
test the localized concentrated load is changing both in time and space with changes
in contact topography-- an explanation that is equally applicable to the nonuni-
formity in crack distribution seen in the longitudinal sections. When a crack in
the transverse section propagates to the contact surface, it acts as a precursor
for the formation of a shell-type (commonly called platelike) wear particle (shown
in Figures 36 and 40). 1In this regard, models provided by Suh and coworkers15 and
Hirth and Rigney29 for crack propagation parallel to the surface (as seen in longi-
tudinal sections) only partially describe the three-dimensional nature of crack
growth leading to platelike wear particles. To completely separate the particle
from its parent metal, tensile forces would be required. Tensile force may be pro-
vided by the surface tractions produced at the sliding interface by the rubbing
contact. The effective force for separation probably need not be very large,
because of the many "large'" subsurface cracks or defects present near the worn or

free surfaces and the semi-brittle nature of the heavily deformed metal.

CONTACT GEOMETRY AND LOAD DISTRIBUTION PRODUCED BY SLIDING
In the early stage of wear the dominant mode of deformation led to a smoother
and more conforming geometry, but the forces that produced this conformity also

strain-hardened the bearing surface. As a consequence, the contact loading and
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stresses were more uniformly distributed. The wear and friction coefficient were
low. Paradoxically, however, if the geometry was '"too" conforming, a localized
concentrated contact sometimes caused a large affected region of intense high load
and stress to develop. This resulted from the inability of the soft contact metal
to readily flow (because it had no place to go) to relieve the imposed load build
up. In addition, if a wear particle formed in this circumstance, its ability to
escape the conforming contact geometry was very limited, and a relatively large
localized region of high wear ensued. Other plausible explanations advanced for
this paradox are (1) that very smooth surfaces lose the ability to store contami-
nants or wear debris because they lack the valleys found between the relatively
large asperities of a rough surface and (2) that smooth surfaces may result in
higher molecular interaction forces, because more area of the two surfaces is in
close proximity, where the greater attractive forces can contribute to wear.

In the intermediate and later wear stages (where the copper surface cannot sus-
tain much deformation before fracture) metal transfer occurred. As a result of the
transfer and its growth, the surfaces became rougher (plowing produced grooves)
which further increased nonconformity of contact. The nonconformity of contact
increased both the tendency for load to concentrate and the associated growth of the
zone of high localized stress. These concentrations in load enhanced the possi-
bility for high localized strain and large-scale fragmentation, which is accompanied
by the formation of large platelike wear particles. The wear and the coefficient

of friction increased.

MICROHARDNESS MEASUREMENTS

To obtain a measure of the extent of plastic deformation and strain-hardening
which had occurred, microhardness measurements were used., The general trend
observed for copper sliding of both steel and Inconel was an increase in surface
hardness with test duration (Figure 44)., Because of the discrete nature of contact,
a cumulative distribution functional relationship for percent of work-hardened sur-

face is operative.
Early Stage

The relatively low hardness observed in this stage is attributed to (a) the

thinness of the work-hardened layer formed, which probably results from the
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relatively low coefficient of friction, (b) the lack of complete sliding contact
between the copper tip and the counterface, and (c) the voids trapped below the

rubbing surface.

Intermediate Stage

A relatively thick layer of deformed metal was formed, the voids were essen-
tially eliminated, and the tip was placed in 'complete' rubbing contact., The sur-
face damage in this stage, although similar to that in the later stage, was not
as severe. As a consequence the least variable and highest nominal hardness was

obtained.

Later Stage

i In this stage the surface was severely fragmented and there was a larger
scatter in hardness than in the intermediate stage. The highest hardness was
equivalent to that measured in the intermediate stage and was representative of the
hardness of a fully work-hardened piece of copper, about 1380 MPa (about 140 kg/minz)
Vickers Hardness at 0.49-N indentation load. In this stage hardness values were
lower where large platelike particles had been removed. The hardness of about

1130 MPa in these areas was still much higher than of the unworn sample or the
surfaces produced during the early stage of sliding. In all hardness measurements
readings were highest where the largest amount of grooving had taken place. This
observation suggested that the grooving produces both the largest amount of work-

hardening and the largest depth of hardening.

Subsurface Microhardness Measurements

The only hardness value believed numerically reliable and characteristic of
the heavily deformed subsurface region of the copper tip was obtained from a
relatively thick region produced by copper sliding against Inconel for 50,000
cycles. The hardness values in this region were of the same order as the highest
hardness determined by direct measurements of surface hardness. The increase in

hardness (as indicated by smaller indentations) from the bulk undeformed metal

toward the heavily deformed region is shown in Figure 45 for copper sliding on

Inconel, A similar trend was observed for copper sliding on steel.
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LONGITUDINAL SECTION

Figure 45 - Longitudinal Section of Copper Bearing at Later Stage
of Sliding on Inconel, Showing Region Below the Rubbing
Surface (Small Indentation Size Corresponds
to Higher Hardness)
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X-RAY EXAMINATION OF WORN COPPER SURFACES

X-ray examination was used to follow the surface deformation produced in the
copper bearing specimen during sliding. The X-ray technique indicated the degree
of straining and the characteristic dimensinns of the coherently reflecting
domains, or cells produced by hea.y deformation. The size of the cells obtained
from X-ray experiments ranged from about 300 X to 500 X, with an average near
400 X. These values are consistent with the experimental observation of
Van Dijck's,30 which showed a worn surface of copper consists of small grains or

o
cells of about 250 to 600 A, The dimensions of this cell can be scaled approxi-

mately to the effective stress used in developing the cell.31 The effective stress
and cell size are related by the following equation:
_ Gb
O, = 3 (5)

where
O, = effective stress
= shear modulus or the modulus of rigidity
o
= Burgers vector for copper = 2.6 A
o
d = cell size in A

Since the X-ray technique averages over the whole worn tip and does not con-
centrate on the most heavily-worked zones, the minimum cell size should be a more
representative value for defining the stresses occurring within the heavily-
deformed regions of copper. Using a value of 300 X, stresses on the order of the
ultimate strength of the copper were found to exist within the heavily-deformed
region. It is therefore not surprising that, in this zone, many microcracks formed

and subsequently grew and met the free surface, forming wear particles.

SUBSTRUCTURE WITHIN THE ZONES OF HEAVY DEFORMATION
The substructure of the heavily-deformed region, as revealed by X-ray measure-
ments and other reported data for worn copper, suggests that it is cellularzs’31

structure containing a high dislocation density and very large localized
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microstrains. The cell structure is typical of the microstructures developed in
metals subjected to high stress and large strains at relatively low temperatures.
The cell structure can present many suitable regions for void formation, void
coalescence, and microcrack formation, with or without second-phase inclusions.
The X-ray measurements revealed very high microstrain gradient across the cells,

or coherently reflecting domains.

MECHANISMS OF WEAR PARTICLE FORMATION

At least five possible sources of wear particle formation and debris generation
sites were identified. They are

(1) particles generated as a direct consequence of asperity deformation, which
are flake-like (Figures 28 and 29).

(2) Particles that are produced by the following steps: (a) a groove is pro-
duced (b) a ridge forms at the side of the groove, (c) the ridge contacts the coun-
terface and load is transferred, (d) the ridge deforms, causing the ridge metal to
flow both in the direction of motion and perpendicular to it (material will flow
into the nearest free space (the groove) to the side and beneath the top edge of the
deforming ridge), (e) if the groove is relatively deep and wide and the metal pro-
duced by the ridge deformation is work-hardened, the deformed edge of the plateau
formed will receive marginal support from the underlying substrate or groove bottom
and will therefore break off after repeated load application. This second type of
wear particle formation is similar to that proposed by Koba and Cook.32 Although
they proposed this mechanism for the early stage of wear, 1 observed it in all
stages (see Figures 10, 15, and 46). Similar particles may be produced as a direct
result of plowing (Figure 47}, Ives28 called this possible source of wear particles
grooving lips.

(3) Shell-, plate-~, or sheetlike particles produced by repetitive concentrated
load sliding on surfaces that may be plateaus, ridges on original contact surface
(see Figures 20, 26, 30, and 40), 4

(4) Transfer of metal to counterface depressions by plastic flow, where it
becomes mechanically interlocked, and is subsequently separated from the parent
metal by sliding (Figures 16, 17, and 22).

(5) Fragmentation of the transfer patch or, possibly, removal of a patch in

its entirety (Figure 48),

73




MOTION

COPPER-INCONEL 5pm

Figure 46 - Worn Copper Bearing Surface at Late Stage of
Sliding on Inconel, Showing Mechanisms of Wear Particle
Formation. (A) Edge Particle, (B) Groove, and
(C) Deformed Ridge or Plateau
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—
A - LIP PARTICLE COPPER ON STEEL 5 pm
B8 - GROC 'E
Figure 47 - Lip Particle Formation on Copper Bearing as a

Direct Result of Ploughing and Grooving
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Examination of collected wear debris in the SEM revealed particles having a
wide range in morphologies. No evidence of the microchip formation characteristic

of abrasive wear was found.

COEFFICIENT OF FRICTION VS. DURATION OF SLIDING - FURTHER OBSERVATIONS

The coefficients of friction vs. duration of sliding for this investigation
are plotted in Figures 9 and 26. The shape of the friction curve shown in Figure
9 held when two dissimilar metals were slid against each other. This behavior is
completely contrary to that reported by Suh and Sin,21 whose friction-time data
were obtained in a crossed-cylinder geometry. These authors also stated that the
behavior found in Figure 26 (copper sliding on copper) ''can result only when the
hardness of the stationary slider is much greater than the moving specimen,"
whereas Figure 26 was obtained for two like metals sliding against each other.
These completely contradictory findings illustrate that the diversity of different
sliding situations currently defies modeling and that any extrapolation of wear
and frictional behavior beyond experimental data is questionable. Three other
noteworthy findings from t.is study are shown in Figures 49 and 50. Figure 49a
shows results when the test was stopped, the specimens separated (1 hr to 1 day),
the specimens returned to contact, and the test resumed. The figure shows that
upon resumption of test the friction vs. cycles curves followed the same path.
Figure 49b shows results of another variation in test procedure, in which the test
was stopped, the specimens separated, the copper contact surfaces moved to make
contact on a new portion of the counterface, and the test resumed. In this test
the coefficient of friction did not resume the same path upon resumption of test;
it dropped to the initial value of the coefficient of friction characteristic of
two new specimens placed in contact. The change in coefficient of friction upon
resumption of test increased faster, however, than when 1 fully annealed new sample
was employed. These results suggest that the counterface topographical character-
istics may be the more significant factor in controlling the coefficient of fric-
tion, although a preworn sample can wear and transfer metal, and consequently change
the initial counterface topography faster than an unworn sample (at least in the
early stage of sliding).

Another variation of test procedure snowed the effect of removing loosely
adhering wear particles on the coefficient of friction time curves. Results ar.
shown in Figure 50, In this variation the test was stopped, the speci one

separated, and contact surfaces were lightly brushed toe remove loowcd
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material, the specimens were returned to contact, and the test was resumed. The
figure shows that the coefficient of friction dropped only slightly, suggesting
that for these sliding conditions the transfer metal is held together rather
strongly, and that the removal of weakly adhering wear particles does not drasti-

cally reduce the coefficient on resumption of sliding.

SUMMARY AND CONCLUSIONS

At least five possible sources of wear particle formation and debris genera-
tion aites were identified, but no evidence was found for microchips that would be
eharacteriatic of abrasive wear,

Wear particles and metal transfer play a major part in the wear mechanism.

The wear partiecles have great difficulty escaping under conditions of flat, small-
amplitude, reeciprocating sliding. The decrease in the probability of wear particle
vemoval has twe mutually antagonistic effects: (a) the particles can agglomerate
and grow, which changes load distribution and increases friction and wear, but

(b) the agglomeration and growth of wear particles in the interface may protect the
counterface, a0 that much of the work goes into deforming and fragmenting the
exiating entrapped debris rather than into producing new wear particles. The second
effect ia based on comparison with unidirectional tests currently under way, which
employed the same sliding conditions and materials used in this study.

The buildup of the transfer patch by accumulation of wear particles leads to
severe grooving and substantial roughening of the copper bearing surface. The
buildup of the transfer patch and increasing penetration into the bearing surface
increasea the coefficient of friction, the depth of the deformed layer, and wear.
The limiting factor in the buildup of the transfer patch is the strength of the
initial attachment of the copper transferred to the hard counterface. This is
believed to be dependent upon the size and shape of the surface depressions ini-
tially present or created during the rubbing process for copper sliding on steel or
Inconel,

Initial transfer of copper to the steel or Inconel counterxface takes place not
by adhesive (solid-phase welding) transfer but by plastic flow of the copper into
the valleys of the barder counterface. In the steel the initial grinding troughs
are receptors for transfer, whereas in Inconel holes are formed during the rubbing
process im the presumably hard bdrittle surface layer are receptors. Buildup of
the tramsfer patch by the accumulation of wear particles may occur by an adhesional




process produced by continuous rubbing of the prot.uding transfer metal (copper)
on itself or by mechanical means.

The heavily deformed regions in the copper bearing surface in the intermediate
and later stages of sliding may be associated with the high localized load concen-

trations and surface tractions produced by topographical changes caused by transfer
patch growth. The size of this heavily deformed region corresponds to the size of
the patch, and in most cases the shape is semicircular. In contrast, the heavily
deformed regions in the copper bearing surface that appear during the early stages
of sliding may be attributed to the deformation of the asperities on the copper.
The depth of this deformed layer takes on the characteristic dimensions of the ini-
tial surface relief. Other regions of heavily deformed metal can be produced as
the harder counterface's topography plows the softer copper =urface. The contribu-
tion of the counterface plowing to the formation of heavily deformed metal was
minimized in this investigation by the use of a relatively smooth and hard counter-
face.

These tests also clearly identified the formation of a heavily deformed,
fragmented region in the copper tip. These regions of heavy deformation receive
stresses that are on the order of the ultimate strength of the copper. They are
composed of cells which are subgrains or coherently reflecting domains of the
original nondeformed grains. They also contain many voids, groups of voids, and
microcracks, which may act as precursors of wear particle formation.

The size and maximum depth of the very highly strained deformed region are

highly dependent on the coefficient of friction; they increase with an increase in
the coefficient of friction, probably to a power greater than one. Determining the

proper functional relationship will require more experimental data, particularly in

the low friction region (u<0.1).
The size and depth of the plastically deformed region depend on both the

coefficient of friction and the normal force. The coefficient of friction in the
terms of this study is a direct measure of the frictional force, since a constant
normal load was employed.

The results of this investigation suggest that the magnitude of the friction

force or surface tractive forces may be more important than the normal forces in

increasing the size of the zone of deformation.




Changes in the surface traction or coefficient of friction during sliding are
probably caused by changes in the surface topography. In copper sliding on steel
or Inconel, these changes in friction are dependent on the morphology of the trans-
fer layer, its mechanical properties, and the adherence of the transfer material to
the counterface metal. In copper sliding on itself, they are directly dependent on
the topographic changes. Topographical changes vary the contact load distribution.
A more conforming contact lowers friction and wear, while a nonconforming contact
increases both friction and wear. The severity of wear depends not only on metal
transfer itself, but also on the morphological and topographical changes developed
during transfer. If the transfer is relatively uniform, wear is less severe.
However, if the transfer is discontinuous and consists of relatively large parti-
cles, wear is more severe.

Wear is highly dependent on the coefficient of friction and is related to the
coefficient of friction by a fourth power relationship.

The results of this investigation also suggest that the topographical changes
produced by sliding may be more important to wear resistance than is the selection
of material properties.

Finally, many conclusions of this study may apply to a variety of other
merallic sliding systems. In a given situation a hard metal or a soft metallic
film on a hard substrate may perform equally well by preventing topographical

change and thus maintaining low friction and wear.
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